Heuristic and Computer Calculations for the Magnitude of Metric Spaces
نویسنده
چکیده
This paper is concerned with an empirical look at the magnitude of subspaces of Euclidean space. Magnitude was introduced under the name ‘cardinality’ by Leinster in [4] as a partially defined invariant of finite metric spaces; his motivation came from enriched category theory, but the invariant had already been considered in the biological diversity literature [6]. In [5] we started to extend the definition to compact, non-finite metric spaces by approximating these with finite metric spaces; we considered, in particular, the magnitude of certain subsets of Euclidean space, such as line segments and circles and we showed that in these cases, when the metric space is scaled up in size, the magnitude asymptotically satisfies the inclusion-exclusion principle. This leads to some natural conjectures and the current paper provides numerical and heuristic evidence for these conjectures. The current paper, however, can be read independently of [5]. As hinted by the title, there are two main ingredients to this paper. The first ingredient is a heuristic argument to calculate the contribution to the magnitude from the ‘bulk’ of points in the closure of a ‘large’ open subset X of Euclidean space Rn; this contribution is shown to be roughly vol(X)/n! ωn where ωn is the volume of the unit n-ball. From here one is led to consider, for naturality reasons, the so-called penguin valuation, defined on certain compact subsets of Rn by
منابع مشابه
Quasi-contractive Mappings in Fuzzy Metric Spaces
We consider the concept of fuzzy quasi-contractions initiated by '{C}iri'{c} in the setting of fuzzy metric spaces and establish fixed point theorems for quasi-contractive mappings and for fuzzy $mathcal{H}$-contractive mappings on M-complete fuzzy metric spaces in the sense of George and Veeramani.The results are illustrated by a representative example.
متن کاملOptimal coincidence best approximation solution in non-Archimedean Fuzzy Metric Spaces
In this paper, we introduce the concept of best proximal contraction theorems in non-Archimedean fuzzy metric space for two mappings and prove some proximal theorems. As a consequence, it provides the existence of an optimal approximate solution to some equations which contains no solution. The obtained results extend further the recently development proximal contractions in non-Archimedean fuz...
متن کاملSOME COUPLED FIXED POINT RESULTS ON MODIFIED INTUITIONISTIC FUZZY METRIC SPACES AND APPLICATION TO INTEGRAL TYPE CONTRACTION
In this paper, we introduce fruitful concepts of common limit range and joint common limit range for coupled mappings on modified intuitionistic fuzzy metric spaces. An illustrations are also given to justify the notion of common limit range and joint common limit range property for coupled maps. The purpose of this paper is to prove fixed point results for coupled mappings on modified intuitio...
متن کاملA common fixed point theorem for weakly compatible maps satisfying common property (E:A:) and implicit relation in intuitionistic fuzzy metric spaces
In this paper, employing the common property ($E.A$), we prove a common fixed theorem for weakly compatible mappings via an implicit relation in Intuitionistic fuzzy metric space. Our results generalize the results of S. Kumar [S. Kumar, {it Common fixed point theorems in Intuitionistic fuzzy metric spaces using property (E.A)}, J. Indian Math. Soc., 76 (1-4) (2009), 94--103] and C. Alaca et al...
متن کاملCoupled coincidence point in ordered cone metric spaces with examples in game theory
In this paper, we prove some coupled coincidence point theorems for mappings with the mixed monotone property and obtain the uniqueness of this coincidence point. Then we providing useful examples in Nash equilibrium.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009